Regular Expressions

A Regular Expression can be recursively defined as follows -

- ε is a Regular Expression indicates the language containing an empty string. (L (ε) = {ε})
- φ is a Regular Expression denoting an empty language. (L (φ) = { })
- s x is a Regular Expression where L = {x}
- If X is a Regular Expression denoting the language L(X) and Y is a Regular Expression denoting the language L(Y), then
 - **X** + Y is a Regular Expression corresponding to the language $L(X) \cup L(Y)$ where $L(X+Y) = L(X) \cup L(Y)$.
 - **X** . Y is a Regular Expression corresponding to the language L(X) . L(Y) where L(X.Y) = L(X) . L(Y)
 - R* is a Regular Expression corresponding to the language L(R*)where L(R*) = (L(R))*
- If we apply any of the rules several times from 1 to 5, they are Regular Expressions.

Some RE Examples

Regular Expressions	Regular Set
(0 + 10*)	L = { 0, 1, 10, 1000, 10000, }
(0*10*)	L = {1, 01, 10, 010, 0010,}
$(0 + \varepsilon)(1 + \varepsilon)$	$L = \{\epsilon, 0, 1, 01\}$
(a+b)*	Set of strings of a's and b's of any length including the null string. So L = { ϵ , a, b, aa , ab , bb , ba, aaa}
(a+b)*abb	Set of strings of a's and b's ending with the string abb. So L = {abb, aabb, babb, aaabb, ababb,}
(11)*	Set consisting of even number of 1's including empty string, So L= { ϵ , 11, 1111, 11111,}
(aa)*(bb)*b	Set of strings consisting of even number of a's followed by odd number of b's , so L = {b, aab, aabbb, aabbbbb, aaaabb, aaaabbb,}
(aa + ab + ba + bb)*	String of a's and b's of even length can be obtained by concatenating any combination of the strings aa, ab, ba and bb including null, so L = {aa, ab, ba, bb, aaab, aaba,}